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There is an urgent need of high-resolution meteorological information to cater for the
new focus on the hydrological response at smaller spatial and temporal scales, which
has arisen largely due to the problems related to urbanization. Alternative means of
estimating precipitation at small scales are beneficial, as high-resolution data acquisition
is a time consuming and expensive task. Successful spatial and temporal downscaling
methods find many uses in the process of solving practical hydrological problems, due
to the fact that they can benefit from the availability of extensive historical records at
lower resolutions. These include deriving of high resolution synthetic data, based on
low resolution observations; interpolation of the measurements of low density rain gauge
networks; combining of data sources of different resolutions and reliability, like gauge based
rainfall and weather satellite data; and downscaling of the output of regional climatic
models and global circulation models.

In this report, a series of attempts to downscale rainfall fields in space and time using
the mathematical theory of fractal scaling is presented. First, a comprehensive review
on the recent findings on fractal scaling and its applications on modeling rainfall was
done, in order to understand the state of the art of this approach. Last two decades have
seen the introduction of fractal and multifractal theories and a considerable amount of
theoretical work, including a number of mathematical models on multiscaling. A number
of applications on precipitation, most involving rainfall data of various locations of Europe,
North America and Oceania, had concluded that rainfall shows fractal scaling properties.
There are good reasons for performing this type of analysis in Asia: The nature of the
rainfall of Asia is distinctly different from many locations where multifractal studies had
been already reported, mainly due to monsoon effect and occurrence of cyclones. The
phenomenally high urbanization rate of the region makes it increasingly vulnerable for
flash floods. Compared with countries of Europe, North America and Oceania, those of
Asia have a severely limited amount of good quality precipitation data at high temporal
and spatial intensities. Japan is the special case in Asia, where extensive databases of high-
resolution precipitation is available. The investigation of Japanese rainfall is an excellent
opportunity to gain an insight into the fractal features of the Asian Rainfall.

The main objective of this study was to apply the already available knowledge of
multiscaling of rainfall to device means to solve precipitation related problems in opera-
tional hydrology, that involves scaling. However, the questions: whether the precipitation



is in fact multiscaling and whether the multifractal theory can adequately capture the
variability in rainfall in time and space, had to be addressed in order to model the scaling
properties accurately. Where possible, the limits of the multifractal scaling regimes were
inspected. Most of the analyses and model validations were performed on precipitation
data of Japan.

In order to investigate the existence and nature of possible fractal scaling in rainfall,
a number of studies were performed. These were the first investigations reported on the
multifractal scaling of Japanese rainfall. First, the scaling in time was examined using a
large number of gauge observed time-series from all over the Japan. The scaling regime
of the investigated data extending from hourly scale to daily scale, found to be breaking
at a scale around two days. This upper-break was less than those reported by many other
studies hitherto. The spectral slopes where much closer to unity and were somewhat larger
than similar past studies.

The specific problem of deriving hourly synthetic rainfall series from observations
made at daily scale was attempted based on the results of multifractal analysis. The
apparent break of the scaling regime subsequent to two days made it difficult to use the
conventional modeling strategies that require a continuous scaling that spans over at least
several different scales. A new modeling approach based primarily on the geometrical
properties of characteristic function of multifractal scaling, that can work satisfactorily
with the small range of available scales of daily and two-day resolutions, was proposed
to overcome the problem. Validation of hourly synthetic rainfall data derived from this
method, by statistically comparing that data with hourly-observed series showed that the
synthetic data closely resembles observations.

Due to the limitations of resolution and precision of commonly available rainfall data,
scaling behavior of rainfall below the hourly scale had not been widely studied. In order to
examine the existence and the nature of scaling below hourly scale, several high-resolution
rainfall series were obtained by performing a rainfall measuring experiment in several
locations in Maehara, Chiba prefecture. The results of analysis of data of a period of one
year indicated that the scaling properties are extending below hourly scale, at least down
to 5min resolution. This result implies that, at least in principal, it is possible to relate a
scale as small as 5min to daily rainfall observations.

Spatial scaling of Japanese rainfall data was investigated using gauge interpolated
rainfall maps. Before the analysis, the network of rain gauges was examined to evaluate
the homogeneity of the distributions and the resolution limits of the analysis, to minimize
the effect of the artificial smoothness introduced by interpolation, on the scaling properties
derived. Scales between 0.10 and 0.80 were subjected to analysis. The original time-
integration of the rainfall snapshots was one hour. As expected, the analysis indicated
a higher variability/intermittency of spatial rainfall than the previously reported studies
involving daily accumulations. A secondary analysis with daily accumulations produced
multifractal model parameters that are comparable with past studies.

Multifractal properties of spatial rainfall showed some important relationships with
the other rainfall related parameters. One is the strong dependency of the former with
the large-scale forcing, or the grid-averaged rainfall. The multifractal parameters demon-
strated a strong seasonal behavior indicating a sharp anomaly around August, too. This
anomaly could be explained by the frequency of occurrence of rainfall of different types in



each season.
Radar based measurement of rainfall has the advantage of being a truly spatial mea-

sure, compared with gauge based data. Further, it is possible to investigate the rainfall
process at much higher spatial resolutions using radar information. However, these es-
timations are not direct measures rainfall quantity. Therefore, radar estimated rainfall
may not be comparable with gauge measurements in terms of quantitative accuracy. A a
multifractal model was used to perform a comparative analysis of the two sources in terms
of spatial variability. While, the two sources produced closely matching results, there was
a discrepancy in scaling properties that could be explained by the differences in extreme
values.

The rainfall over a large area generally shows some regular spatial heterogeneity, due
to many reasons that include orography and slope aspects. When the scale of temporal ac-
cumulation is small, this heterogeneity is hidden in the high variability or the randomness
of the process. However, at larger accumulation lengths, rainfall shows distinct patterns
that reveal the spatial heterogeneity, for the randomness becomes lesser and lesser with
increasing integration volumes. Since multifractals are processes that are statistically ho-
mogeneous in space, pure multiscaling fields cannot represent this spatial heterogeneity,
which is an inherent characteristic of the aerial precipitation. A new multifractal-based
spatial disaggregation model, which can accommodate the spatial patterns at long accu-
mulation sizes, was proposed. The model has two components: A deterministic part that
maintains the spatial heterogeneity apparent in large accumulations and a multifractal
model to describe the randomness that is predominant in short integration sizes. This
separation of rainfall generation into two phases is consistent with the empirical under-
standing of rainfall over land. The combination of the two components result in a process,
which can produce rainfall fields that has both the properties of the small-scale variability
and the long-term spatial patterns. Since the heterogeneity and the random variability
are independently considered in the model, it has the unique advantage of the ability to
use any multifractal model for modeling the latter. This fact was demonstrated by using
two multifractal models.

Application of the model on radar based daily rainfall over central Japan, produced
encouraging results. The disaggregation based on the large-scale forcing could maintain the
observed long-term heterogeneity of the model area accurately. The model was validated
by comparing the rainfall intensity distributions at a number of points having small,
moderate and large rainfalls. The reasons for this model to work well for autumn, summer
and spring, but to fail in winter, were explained.

Extensive analytical studies showed that the rainfall in Japan show multiscaling prop-
erties. A concrete method to downscale daily rainfall into 7 hourly scale was proposed
and validated. A new spatial rainfall model, which can disaggregate rainfall maintaining
the long-term spatial heterogeneity, was implemented. This could create daily rainfall
distributions with properties similar to observations. To conclude, this study revealed the
potential of the multifractal scaling in solving practical hydrological problem of downscal-
ing rainfall in space and time.
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Chapter 1

Introduction

There a two streams of geophysical engineering that are developing at a remarkable
phase from the beginning of the last decade, namely the study of the earth’s atmosphere
and related phenomena from a holistic point of view and the development of hydrological
analysis and modeling techniques that are focused on increasingly smaller regions. Largely,
both of these development trends are results of attempts to understand and counter the
human made changes that have adverse impacts on the environment and threatens the
safety and sustainability of the human society.

The concerns about the global warming and its consequences like climatic change have
triggered an increased interest in study on global or regional climate and atmospheric
phenomena. Recent years have seen a tremendous amount of research to improve the
understanding of the mechanisms of the atmosphere that regulate the temperature, winds
and precipitation. In addition to the intended scientific objectives, this environment has
provided excellent breeding grounds for a host of improved climatic models that attempt
to forecast the wind and precipitation patterns at regional scales.

Rapid urbanization has created many hypersensitive localities that respond to the
forces of the hydrological cycle in a remarkably unorthodox manner. A prominent char-
acteristic of the urban hydrological systems is the swiftness of change: both in time and
space. Last few decades have seen an increasingly high number of a new type of floods
that occur within hours of high rainfall. These flash floods are partly the results of the
increased clearing of watersheds of vegetation and decrease of the infiltration capacity of
the soil surface, mainly due to construction activities. On the other hand, the so called
flash floods have been increasingly noticed, due to the stakes, both in terms of financial
value and human life, that are concentrated on small extents of vulnerable land on urban
environment. Regardless of the reasons, urban flash floods have become vicious problems
that have to be mitigated by the hydrological engineers. The major challenge that needs
to be addressed in the fact that the scales involved in urban hydrology are much smaller
than those of conventional hydrological studies. Many hydrological variables have to be
quantified at these small space time scales. Among these variables, precipitation is the
most important, due to its being the driving force of the hydrological cycle, urban or
otherwise.

Mathematically, fields of values in space or time can be classified in to two broad
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categories based on their behavior at different scales1. The first type, shows lesser and
lesser variability as the scale is reduced. Within certain bounds of scales, spatial and
temporal variation of a river flow can be interpolated to obtain intermediate values, with
a reasonable accuracy. The second type, to which the precipitation belongs to, shows an
increase of variability as the scale is reduced. At least in the range of scales that are
involved in catchment and urban hydrology, interpolation of precipitation does not yield
representative results. A simple example is the temporal variation of rainfall. It is a
well established fact that the intensity of precipitation increases with the decreased time
step. This intermittency in precipitation demands special techniques in establishing scale
relationships.

1.1 Practical problems involving scaling rainfall

Scaling problems can be classified by the dimensional space concerned with: temporal
or spatial. This report proposes solutions to some of these problems using theory of
multifractals.

The rainfall data acquisition is a time consuming exercise. A large number of years of
precipitation data are needed to construct a data set that is climatologically representative
of the prevailing conditions of a given locality. Traditionally, rainfall data was recorded in
daily basis. One reason for this practice was the limitations of the manual instrumentation
that needed human intervention at each record taking. On the other hand, the contem-
porary hydrological problems and analytical tools did not demand a higher resolution.
Consequently, many counties all over the world have at least several good daily rainfall
data sets that spans over a century, in many cases.

Recent focus on urban hydrology and natural systems, with drastically decreased re-
sponse times, are demanding precipitation data with higher temporal resolution. Rainfall
data at least of hourly resolution has become a minimal requirement in the modern re-
sponse studies. However, acquisition of a good set of hourly rainfall data is not a task
that can be achieved overnight. One or two years of data have a higher chance of not
representing the variability that is important in sound hydrological design. Thus, if daily
and hourly rainfall can be related, it allows the water resources engineers to tap into the
available resources of daily rainfall to derive hourly rainfall distributions.

The advancements of the regional meteorology and better understanding of global
circulation patterns have contributed to improve the weather forecasts at regional scales.
Remote monitoring by weather satellites and ground based radar arrays have further
enhanced the predictability at regional level.

In order to make use of these climatic predictions for water resources and flood miti-
gation activities at much smaller scales of operational hydrology, relationships among the
regionally averaged precipitation and the local distributions must be established. Even
the relationships in a stochastic sense, can contribute much to fields of interests of the
hydrological engineer, in areas like long-term flood hazard mapping and water resources
availability studies.

1Classification of geophysical variables into these two categories become rather subjective, owing to the
fact that they always show a mixture of both these properties.
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1.2 Fractal as a solution for scaling rainfall

Fractal theory is the recently developed branch of mathematics that concerns with
the intermittency and discontinuity of fields. Fractals are objects that show similarity
at different scales: the similarity of a part of an object (or a field) to the whole. This
similarity has long been observed in natural objects like trees, mountains, river networks,
coastal lines and clouds. In the last two decades fractals developed into a distinct field
of mathematics that can be used to study the similarity quantitatively. Multifractal is an
extension of fractal theory to incorporate fields of measurements.

Physicists have described the scale relationships in numerous types of geophysical
fields, including precipitation, using the multifractal theory. The success of the theory in
capturing essential features of the ‘invarience’ of scale – the properties that do not change
with scale, has been widely reported in the last decade. Several successful multifractal
modes and simulation techniques based on the findings have been developed.

Perhaps the biggest fact in favor of multifractals as means of ‘scaling’ rainfall is its
ability to treat discontinuity and intermittency as an integral part of the core theory,
as opposed to many traditional approaches based on continuous fields that consider dis-
continuities as exceptions. The ‘violent’ nature of rainfall distribution – the increase of
fluctuations as the scale is reduced, can be naturally incorporated into multifractal theory.

1.3 Issues addressed by this dissertation

There were many studies reported hitherto in the literature, concerned with the
modeling of precipitation as a multifractal process. A few general purpose multifractal
models have been applied to spatial and temporal rainfall data of some regions of the
world2. However, the gap between these analyses and the application of those findings
in operational water resources engineering problems, is still a wide one, requiring further
studies to test, model and validate approaches that suit engineering applications. There
has been only a very few studies that were targeted at the objective of solving real-world
problems.

The primary focus of the work presented in this dissertation was to study new methods
that makes it possible to apply the existing knowledge of multifractal theory in solving
practical problems of operational hydrology related to scaling of precipitation. While
proposing of new multifractal modeling strategies have not been a central issue, several
simple methods were developed during the attempts to achieve the above main objective.

There has been no studies about the multifractal scaling properties of Japanese rain-
fall at the commencement of the work reported here. Investigation of recent literature
showed that there were only very few studies involving Asian countries also. Thus, in
order to corroborate the scaling behavior in general and validity of multifractal as a model
for rainfall in space and time, a number of analyses of Japanese precipitation data have
been done.

2Most of these studies involved rainfall in Europe, North America and Oceania.
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1.4 Organization of the dissertation

Following the formal introduction of fractal as a distinct area of mathematics, two
decades ago by Mandelbrot, a large amount of work has been done on the theoretical de-
velopment of fractals and multifractals as well as on various applications in various fields
including geophysics. With special emphasis on modeling on precipitation, a comprehen-
sive review of these findings is done in chapter 2. The area covered in the chapter is too
broad to treat each theory and analytical technique completely. Descriptions of the specific
models and methodologies that are directly used in the work presented, are supplemented
with detailed treatment in each place, where work related to them are presented for the
first time. The objective of chapter 2 is to appreciate the landmark developments that lead
to the work presented herein and to provide pointers for the search of relevant literature,
while the theoretical explanations elsewhere were intended to provide the details that are
fairly adequate to repeat the analyses and modeling work presented.

Chapter 3 presents the application of a stochastic rainfall model that was not based
on fractal theory, to model rainfall in time. The model, originally intended to be used
at a fixed time scale, was applied at a number of different temporal resolutions and the
behavior of the model variables at those scales were compared. The patterns revealed by
the results of these parameter comparisons suggested that most of the parameters show
fractal scaling properties in time. This encouraged the use of fractal theory as a basis for
modeling rainfall process, in the main work presented in this dissertation.

A large number of rainfall time series of Japan were analyzed for scaling properties.
These results are given in chapter 4. The proposal to model rainfall in time, as a multi-
fractal process is supported by the results. The nature and the extent of the scaling of
rainfall in time is examined and the multifractal model parameters that describe that scal-
ing were evaluated. Investigations regarding the dependency of the multifractality on the
parameters affecting rainfall, like elevation and geographical location, are also presented.

Chapter 5 presents a modeling approach to derived synthetic hourly rainfall data from
daily observations. Scaling of the exceedance probability at different intensity thresholds
was used as the basis for relating the scales. All the estimation methods that were available
to estimate parameters for multifractal models (which involved exceedance probability
or any other measure like statistical moments) required at least several temporal scales
available for analysis. However, since the scaling properties of Japanese hourly rainfall
data break above 2 days (section 4.2), it was not possible to utilize these methods to derive
multifractal properties from daily data – at least in the context of the Japanese rainfall
data. In order to overcome this problem, a different method of multifractal evaluation
is proposed. Using this method on daily data of quality and length that are typical for
operational hydrology, it was possible to evaluate the required multifractal parameters for
relating hourly scale to daily scale. A multifractal simulation model was used to generate
multifractal fields based on those parameter estimation. Synthetic hourly rainfall series
were created from these multifractal fields. The model was validated by comparing the
properties of synthetic series with those of the hourly observed rainfall. These comparisons
included: comparison of rainfall intensity distributions, time series properties and features
that are unique to rainfall, like the quantity and distribution of non-rainy areas and the
statistics of individual rain events.

Analysis of hourly rainfall series showed that the rainfall is scaling from 48h to hourly
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scale. The next natural question is the existence and nature of scaling at scales below 1h.
This is also an important investigation, for many hydrological problems related to areas
like urban storm drainage design, requires data of temporal resolution of a few minutes. In
order to attempt an answer to this question, a high precision rainfall measurement project
was conducted in Ebi river basin of Chiba prefecture. Results of an year of measurement
was available at the time of writing. Chapter 6 presents the details of the calibration,
field setup and operation of this experiment. The resulting high quality rainfall data was
analyzed for multifractal scaling in order to investigate scaling at high resolutions – scales
ranging from several hours to several minutes.

For the study of spatial rainfall, two types of data were used. The multifractal
analysis of the the first type – rainfall distributions generated by spatially interpolating
gauge based observations, are given in chapter 7. Primarily, hourly spatial distributions
were analyzed for a period of one year. The seasonality of multifractal properties and
the possibility of using multifractals to classify rainfall into types based on distribution
patterns, are also discussed. Similar results for daily accumulated spatial rainfall data are
given in appendix A. Daily results were compared with a previous report regarding spatial
analysis of rainfall in northern Europe. However, there were no similar studies on hourly
scale reported.

The other available data source for spatial studies, was the hourly estimations of
spatial rainfall by the radar array of the Japan Meteorological Agency3. This data has a
better coverage and resolution compared with gauge interpolated data, which makes it a
useful source of information on the spatial distribution of rainfall. The validity of using the
latter source for scaling studies, is examined in chapter 8. A comparison of multifractal
model parameters derived from two data sources is presented.

One of the severe shortcoming of using multifractal fields to represent rainfall in
space is that multifractals can not treat the spatial heterogeneity that is present in rain-
fall. There are many reasons including orographic enhancement and slope aspect effects,
for heterogeneity in spatial rainfall. While, this heterogeneity is hidden in the (more
prominent) random variability at small time integration sizes(e.g. daily scale), it become
very much apparent when the integration size is increased to monthly or seasonal level. A
rainfall model based on multifractals, but that can take this heterogeneity into account,
is proposed in chapter 9. This model treats the spatial variation of rainfall as a combined
effect of two independent agents: random variability and the spatial heterogeneity. The
model was used to simulate radar based daily spatial rainfall of central part of Honshu
island and the results are presented.

The results from each chapter are discussed at the end of the chapter. Chapter 10
has a comprehensive discussion of the results presented in the whole dissertation and a
conclusions arrived at.

3The radar data is calibrated with gauge estimations and are known as radar-AMeDAS.
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