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ABSTRACT 

Concerns have been raised regarding disinfection by-products (DBPs) formed as a result of the reaction 
of halogen based disinfectants with DBP precursors. In order to appreciate the chemical and biological 
tradeoffs, it is imperative to understand the formation trends of DBPs and their spread in the 
distribution network. However, the water at a point in a complex distribution system is a mixture from 
various sources, whose proportions are complex to estimate and requires advanced hydraulic analysis. 
To understand the risks of DBPs and to develop mitigation strategies, it is important to understand the 
distribution of DBPs in a water network, which requires modelling. The goal of this research was to 
integrate a steady-state water network model with a particle backtracking algorithm and chlorination as 
well as DBPs models in order to assess the tradeoffs between biological and chemical risks in the 
distribution network. A multi-objective optimisation algorithm was used to identify the optimal 
proportion of water from various sources, dosages of alum, and dosages of chlorine in the treatment 
plant and in booster locations to control the formation of chlorination DBPs and to achieve a balance 
between microbial and chemical risks. 
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INTRODUCTION 

Disinfection is the most important step in drinking water treatment and is unquestionably important in 
the supply of safe drinking water (WHO 2006). Disinfectant residual maintenance in the distribution 
system is practised mainly to minimise bacterial growth and biofilm formation, to act as an additional 
safeguard against exogenous pathogenic intrusion, and to act as an indicator for system integrity 
(Laurent et al. 2005). Chlorine and its compounds are the most commonly used disinfectants for the 
treatment of water and its popularity is due to its high oxidizing potential, high half life, and relatively 
low cost (Gopal et al. 2007). 

However, disinfection can pose chemical threat due to the formation of carcinogenic disinfection by-
products (DBPs) in the presence of precursors such as natural organic matter (NOM) and bromide  
(Br-). Chlorination DBPs such as trihalomethanes (THM) and haloacetic acids (HAA) are well known 
carcinogenic substances and there is a growing body of epidemiological evidences showing that these 
compounds are linked to cancer (Gopal et al. 2007). This necessitates the creation of checks and 
balances to control the usage of disinfectants to minimise the health risk due to DBPs. It must be noted 
that the reduction of chlorine would compromise the microbial safety of water. Hence, a balance 
between biological and chemical risk has to be achieved. Ideally, an overall risk assessment must be 
carried out considering the microbial risk due to inadequate disinfection and the long- and short-term 
risks due to DBPs. 

 



 

DBPs formation and speciation is a complex phenomenon and depends on many factors such as NOM 
concentration and characteristics, water quality parameters (e.g. pH and background inorganic matrix, 
especially bromide concentration), chlorination conditions (e.g. temperature, chlorine dose and contact 
time) and ratios of bromide/DOC (dissolved organic carbon) and bromide/chlorine concentrations 
(Singer 1999; Ates et al. 2007a,b). Numerous water quality models are available to predict the 
formation of DBPs based upon water quality parameters. DBPs models such as USEPA models (Amy 
et al. 1998) and kinetic models (Sohn et al. 2004) are among the widely used models. They are based 
on bench scale assessments under laboratory conditions and predict the formation of DBPs based on 
water quality and treatment conditions. However, they do not take into account practical considerations 
such as mixing of water from different sources in a network and the formation kinetics of DBPs based 
on studies under real distribution system conditions. DBP formation in distribution networks can be 
modelled by combining DBPs models with network hydraulic tools such as EPANET 2.0 (Rossman et 
al. 2000; Seyoum 2006). In addition to hydraulic analysis, EPANET 2.0 can also perform computations 
such as determining water age, tracing the water source, and water quality computations such as the 
formation or decay of chemicals such as chlorine. However, it cannot perform the analysis of a number 
of chemicals at a time, which is essential to determine the kinetics of DBPs in the network. Thus, this 
study has been able to combine the strength of the hydraulic capability of EPANET 2.0 and the 
statistical DBP models by creating an external module to link the two models. The number of paths 
taken by water, the proportion of water through these paths and the age of water in various paths is not 
computed by EPANET 2.0. From EPANET 2.0, an average water age at the nodes is estimated and 
used by the water quality models. An EPANET 2.0 based tool, a particle backtracking algorithm 
(PBA), has been used to determine these parameters (Zierolf et al. 1988). PBA is a Lagrangian model 
for simple networks without tanks, which tracks the travel of water particles in reverse time and finds 
all the paths from an input location (source) to the output location (Bhave & Gupta 2006). PBA 
concisely describes the output concentration (co) as a linear function of the input strength (Shang et al. 
2002). 
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where N = number of paths between input and output; to = output time; cj = water quality at source 
input; tj = time delay for travel path j; and γ = impact coefficient for travel path. 

In the presence of reservoir tanks, the computational effort can be very large as PBA generates huge 
numbers of paths when tanks are draining (Shang et al. 2002). The complexities involving multiple 
water sources and multiple chemical species can be handled by using innovative tools such as the 
particle back tracking algorithm (PBA) developed by Shang et al. (2002) and EPANETMSX (Shang et 
al. 2008) – an extension of EPANET 2.0 which models chemical reactions between multiple chemical 
and biological species. These tools enable water quality estimation using multiple input parameters 
along all the different travel paths from various sources. 

This research focuses on: (i) integrating statistical chlorine residual and DBPs models (Amy et al. 
1998), with the hydraulic model of EPANET 2.0 (Rossman et al. 2000) along with a particle 
backtracking algorithm (Shang et al. 2002) and a multi-objective optimisation algorithm NSGAII (Deb 
et al. 2001); (ii) mapping the chemical and biological risks in the distribution system corresponding to 
DBPs and pathogens; and (iii) assessing the formation of DBP in the distribution system with multiple 
water sources. In order to achieve these objectives, it is necessary to integrate a hydraulic model that 
analyses the flows in a water distribution network with DBP models, and an optimization algorithm. 
This study does not focus on the different treatment methods or different levels of treatment to 
minimise the risks. The water treatment cost has been approximated for conventional water treatment 
using prevailing market rates. 

METHODS 

In this study, a modelling tool has been developed for identifying the trade-off between chemical 
(carcinogenic) and biological (microbial) risks. In theory, it is possible to calculate both biological and 
chemical risks in financial terms. However, it should be understood that these two risks are very 
different. The former manifests itself as an immediate cost while the latter refers to long term. The 
levels of uncertainty involved in estimating the two quantities are also very different. A better approach 
of optimization would be to come up with a series of optimal solutions with different chemical and 
biological risk levels, or a two-dimensional Pareto-optimal front with chemical risk and biological risk 



 

(or their cost equivalents) as objective functions. For example, with the biological risk level of x , 

suppose that there are number of (sub-optimal) solutions for chemical risk y1 , y 2 ,. .. yn . If the value 
yi is the smallest level of risk in this set, one can call yi  the optimal solution for chemical risk with a 

(fixed) biological risk of x . However, when x  varies, the optimal solution yi  also varies. 
Therefore, we end up with a Pareto optimal front of optimal solutions, which can be called optimal 

solutions for y with varying x . The results of such an optimization are similar to the one shown in 
Figure 1. Decision makers are able to interpret such a representation without any background on 
optimization and modelling, in order to make final recommendations. 

The non-dominated sorting genetic algorithm (NSGA-II) developed by Deb et al. (2001) has been used 
to perform the necessary multi-objective optimization (MOO) to obtain the Pareto-optimal front of 
biological risk versus chemical risk. Genetic algorithms (GA) is an optimisation method based on 
Darwinian theory of evolution. NSGA-II is an algorithm that extends GA to MOO. It employs an elitist 
preservation strategy and uses an explicit diversity preserving mechanism and produces Pareto-optimal 
solutions (Salazar et al. 2006). The average annual cancer treatment cost per patient has been based on 
the research of Chowdary (2010). 

Predictions of THMs, HAAs and chlorine decay have been made using the statistical DBP models 
developed by Amy et al. (1998). The models incorporate water quality parameters such as DOC, pH, 
Br- and temperature; and treatment conditions such as chlorine dose and reaction time. Separate models 
have been developed for raw water as well as alum-coagulated and iron-coagulated water. In this study, 
alum-coagulated water models have been used including temperature and pH correction factors 
developed by Shon et al. (2004). Residual chlorine has been computed using the chlorine decay model 
developed by Amy et al. (1998). Hydraulic analysis of the network performed using the EPANET 2.0 
model (Rossman et al. 2000). 

In addition to integrating the hydraulic and chemical models, a multiple objective optimisation 
algorithm based on biological safety and chemical risks has been linked to control DBPs in the network 
and to minimise the chemical risk. 

A tool has been integrated in C/C++ programming language comprising NSGAII (Deb et al. 2001) for 
optimization, hydraulic EPANET toolkit functions (Rossman et al. 2000), particle backtracking 
algorithm (Shang et al. 2002), chlorine and DBPs computations models (Amy et al. 1998), cancer risk 
estimation (Sohn 2000) and DOC removal model (Zhu 1995, as cited by Sohn 2000). The developed 
tool was used to analyze water quality in networks with booster chlorination and to predict the spread 
of arsenic in the network due to deliberate or accidental contamination. The model implementation has 
been arranged in two parts: the risk model and the optimizer, as shown in Figure 2. In the risk model, 
water quality parameters are direct input values whereas alums and chlorine doses as well as reservoir 
head are input values generated by the optimiser. 

The objective of the optimiser in this context is to minimise costs. The objectives, real variables and 
constraints for the Optimiser are presented in Table 1. Pareto optimal solutions have been generated by 
the NSGAII after a number of iterations. 

Table 1 | Objectives, real variables and constraints for optimiser 

Objective functions  Minimize cancer treatment cost 
 Minimize water treatment chemicals cost 

Real variables  Alum dose at water treatment plant 
 Chlorine dose at water treatment plant 
 Head of reservoir at water treatment plant 
 Chlorine dose at booster chlorination 



 

Constraints  Pressure ≥ minimum desired pressure 
 Residual chlorine > 0.2 mg/L (WHO 2006) 
 CT value > required CT value (USEPA 1999) 
 HAA6 < 0.060 mg/L (USEPA 1998) 
 TTHM < 0.080 mg/L (USEPA 1998) 

Case study 

The developed tool was tested on a distribution network in Minneriya, in Sri Lanka (Wanigasekara 
2009). The network consisted of a single source and 89 nodes (Figure 3). The hydraulic and water 
quality analyses were carried out for 72 hours (run time). CT values have been based on residual 
chlorine available at the node by considering only bulk phase reactions. For optimising the flow from 
the reservoirs in the network with multiple sources, the head of the reservoirs can be changed but, in 
the scenarios under consideration, the reservoir heads were fixed due to the hydraulic complexities of 
the network. 

The following scenarios were : 

 Case I – Arbitrary chorine dose at source 
 Case II – Chlorine dose optimisation at source 
 Case III – Alum coagulation optimisation at source 
 Case IV – Chlorine and alum optimisation at source 
 Case V – Chlorine optimisation at source and booster chlorination 
 Case VI – Chlorrine dose optimisation at booster chlorination with less chlorine at source 
 Case VII – Alum, chlorine and flow optimisation with multiple water sources 
 Case VIII – Alum, chlorine and flow optimisation with multiple water sources and booster 

chlorination 
 Case IX – Chemical perturbation 

 

RESULTS AND DISCUSSION 

Consistency check of the optimiser 

After a number of trial runs and consistency checks, optimisation parameters: population size, number 
of generations, probability of crossover of real variables, and probability of mutation of real variables 
were selected to be 128, 50, 0.7 and 0.1, respectively. In order to check if the NSGA II optimisation 
produced consistent results, an optimisation test case was run five times with different randomizations. 
The results showed that the average annual cancer treatment cost was USD $82,600 ± 430, whereas the 
average water treatment cost was USD $55,800± 1080 for all of the five cases. Hence, it was concluded 
that the optimiser produced consistent results in repeated runs. 

Upon optimising all the cases under consideration, the best populations, i.e. alum dose and chlorine 
dose complying with the constraints for each case, have been generated. The corresponding water 
treatment cost and cancer treatment cost for each of these populations have also been computed (Figure 
1). The results show that the water treatment cost is lower when chlorine dose is optimised without 
alum addition (Case II). Optimizing alum and chlorine doses at source (case IV) results in lower water 
treatment costs compared to other cases where either only one of the chemicals is optimized at the 
sources (cases III) or when booster chlorination is included (cases V and VIII). The least cancer 
treatment cost was observed when both coagulant and chlorine were optimized at source (case IV). The 
results of chemical risk are presented in the form of a contour plot for each case (Figures 4, 5, 6. 
Chemical risk for case V follows similar pattern as case IV, but in the vicinity of the booster locations, 
higher risks are observed due to the high residual chlorine. Analyses for water age, residual chlorine, 
CT values, THM and HAAs have also been performed and contour plots were prepared (results not 
shown). From the results it has been observed that chemical risk varied with changes in alum dose, 
chlorine dose, presence of booster chlorine, and additional source. 

Arbitrary dose versus optimised doses of chlorine and alum 
An arbitrary chlorine dose of 3 mg/L was assumed for Case I to compute the chemical risk. However, 
the optimum chlorine dose recommended by the model was 2.34 mg/L (Case II). In both cases there 



 

was no additional alum dosage. It was observed that the chemical risk was less in Case II compared to 
Case I. In Case III, the chlorine dose was fixed at 2.34 mg/L and alum dose was optimised. The 
optimised alum dose was found to be 47.5± 14.5 mg/L. In Case IV both alum and chlorine doses were 
optimised with values of 46.4 ± 15.2 mg/L and 2.2 ± 0.1 mg/L, respectively, and the chemical risk was 
found to be the least when both alum and chlorine doses were optimised. 

Optimisation of chlorine at source versus booster chlorination 

It was observed from Figure 5 that the presence of booster chlorine increased the chemical risk in the 
surrounding nodes. After optimization, the chlorine dose required at the booster chlorinators was close 
to the minimum set point of 0.4 mg/L, which clearly indicates that booster chlorination was not 
necessary in this particular network. In cases VI an attempt was made to identify locations of booster 
steps by reducing chlorine dose at source to less than 2 mg/L. It was observed that residual chlorine at 
several scattered nodes was less than 0.2 mg/L (Figure 7), which implies that either several booster 
chlorinators should be implemented or the chlorine dose should be increased at the source. The latter 
solution was more attractive and feasible for this network, in particular, as it is a relatively small 
network. 

Single source versus multiple sources 

In the case of multiple water sources (case VII and case VIII), it was observed that the chemical risk 
reduced substantially in spite of a higher amount of DOC from the additional source. The reduction in 
DBPs is mainly due to reduction in water age, which is the result of pumping additional water from the 
second source to the distribution system. 

Node specific solutions 

A reference node has been selected to evaluate the different cases outlined in the study. Water quality 
and risk parameters were computed at node MJ9-74 (Figure 2), which received approximately 40% of 
its water from source 1 and 60% from source 2. Most of the other nodes received about 90% of their 
water from either of these sources. 

The variation in residual chlorine values and chemical risk for five cases are shown in Figure 8. It can 
be clearly seen that the residual chlorine and chemical risk follow patterns of water age. While a direct 
relationship was observed between chemical risk and water age, chlorine residual had an inverse 
relationship. The residual chlorine for all the optimised cases was lower compared to that of Case I 
(arbitrary dose), however, in all cases residual chlorine was more than the minimum required 
(0.2 mg/L). Figure 8(b) shows that the chemical risk in Case IV was the lowest compared to all other 
cases, and the fact that it is lower than in case V (with booster chlorination) indicates that there is no 
need for booster chlorination in the particular network if chlorine and alum dose are optimised at the 
treatment plant. 

Chemical perturbation and spread 

Injection of a toxic chemical in the network has been simulated to analyse the extent of its spread and 
duration of its presence in the system (Case IX). This information is important to assess water security 
from the perspective of the impact of potential lethal concentrations arising from an intentional 
chemical perturbation. In order to simulate this condition, 10 kg of arsenic has been injected into the 
system during peak demand at node MJ-5. This node is the critical juncture where the inflow from the 
source enters the network and the trunk mains branch off from this point. The lethal dose (LD50) value 
for arsenic is 1 mg arsenic/kg body weight, which is approximately 35 mg/L in water (Dart 2004). The 
results showed that spiked arsenic remained in the system in higher concentrations (1–57 mg/L) for 
about 9 hours, i.e. from 08:00 hours to 17:00 hours, after which it was found only in trace 
concentrations in nodes with less demand and at dead ends. Figure 9 shows that near the point of 
injection arsenic concentrations were higher than the LD50 until the first 9 hours whereas, at distant 
locations, an increase in arsenic concentration was observed at a later time. Figure 10 shows the 
concentrations of arsenic at three nodes during the entire simulation period. Node M-7 is close to the 
point of arsenic injection. Node MJ3-17 is a node in a secondary loop away from the point of injection, 
whereas Node MJ7-70 is one of the farthest nodes from the point of injection where the water age is 
high and the demand is low. The pattern of spread has been unique at each of these points. There was a 
spike at M-7 much higher than LD50 for some time, after which there was no trace, whereas at MJ3-17 



 

the arsenic concentration increased beyond LD50 for a short period. However, at MJ7-70, the 
concentration had a gradual build up and drop spreading over 6 hours. 

Predicting the extent of spread and duration of spread is useful in isolating areas of toxicity and to carry 
out flushing to remove the contaminant from the system. 

Effect due to demand fluctuations 

Case IV has also been simulated for variation in demand in order to understand the variation in 
microbial, cancer risk and its effect. Demand multiplier of the network has been varied between 0.8 and 
1.2 and also by means of spiking the demands in the reference node (MJ9-74) and in certain nodes 
(MJ5-26 and MJ-65) in the vicinity of the reference node. Significant changes in the water age (Figure 
11) and risks have been observed due to change in demand for the entire network. It could be inferred 
that the variation in demand has a certain effect on the risk assessment and the subsequent optimisation 
that would lead to the change in optimisation levels. The varying seasonal demands could also have the 
same effect. The exact quantification of the risks and its variation merits further detailed study for the 
confirmation of the same. Even though the change in water age has been significant for spiked 
demands at certain nodes, this is not likely to affect the overall annual increase in the risks and also the 
overall optimisation scheme. Also, the sensitivity of the models has been tested by introducing a water 
tank that served as a hydraulic and water quality hot spot. The rapid filling of the tank during the initial 
hours and slow discharge from it due to network hydraulics lead to high water ages in the tank in the 
range of 58–60 hours and to a higher dose of alum and chlorine. Optimisation in this case has not been 
possible due to the tremendous increase in computational load due to the iterative calculations that 
particle backtracking algorithm (Shang et al. 2002) performs for computing water quality in the Water 
tanks. 

Limitations and recommendations 

We tested the model on small distribution systems as a proof of concept and agree that the results 
would have been more informative if the model was tested on several bigger distribution systems for 
extended periods, preferably for a year or more with diurnal and seasonal variations in demand. 
However, numerical optimization schemes used in the study demand thousands of repeated 
simulations, which stress the computing resources even for a small network. A single optimization run 
for the distribution system under study required about 22 hours on a dual core 2.53 GHz platform. It is 
indeed possible to apply the system for more detailed, complex networks and longer simulations 
without any changes in the model. However, the optimization schemes would take several weeks of 
continuous computing on a normal personal computer. The other alternative is to go for a parallel 
processing approach, which needs some trivial changes in the model code (evolutionary algorithms are 
well-known for easy parallelization). However, this is left for future research. The optimisation module 
is only capable of solving networks based on continuous supply and demand driven approach and 
modifications are necessary for intermittent supply. Further, the computational time could be much 
higher for networks with tanks as the particle back tracking algorithm generates huge numbers of paths 
when tanks are draining (Shang et al. 2002). 

It has already been mentioned that DBPs models such as USEPA models (Amy et al. 1998) and kinetic 
models (Sohn et al. 2004) though widely used but are based on bench scale assessments. The water 
residence times in distribution system and its impact on disinfectant residuals and THM formation has 
been studied by Simard et al. (2011) who have recommended the calibration of hydraulic network 
based on the residence time obtained using tracer studies. Due consideration has been already given to 
the kinetic DBPs models developed by Sohn et al. (2004) during the development of the risk analysis 
module. Results obtained from both the models – chlorine concentration, THMs, HAA6 – have been 
checked and variations have been found to be within acceptable limits for the range of water quality 
parameters under consideration. The kinetic models have not been adopted in spite of it being found 
more stable than USEPA models developed by Amy et al. (1998) due to that fact that Sohn et al.(2004) 
have developed the kinetic model for the TTHM and HAA6 and not for the individual species. It is 
recommended that the incorporation of kinetic models for individual DBPs species will certainly 
enhance the accuracy of the results. 

Also, due to the limited availability of time and resources, only the bulk water reactions in the pipeline 
have been considered and the wall reactions have not been considered. The limitations at the DBPs 
prediction and incorporation enhanced hydraulic parameters, such as variation and demand, could be 



 

overcome though much focused research needs to be conducted extensively on these limitations. 
Integrity of water quality and negation of biological risk in a municipal water supply system has always 
been paramount and care has been taken in developing the optimisation module in not overriding this 
principle. There has always been a risk of trade off whenever biological risk is computed in monetary 
terms and it has been precisely due to these reasons that the required residual chlorine values and CT 
values have been used as constraints in the optimiser and not as variables. 

Many water distribution networks in developing countries face the problem of low-pressure conditions 
and intermittent supply (Vairavamoorthy et al. 2008) that does not yield well for demand driven 
analysis which is the traditional practice in water-distribution systems analysis. While this analysis has 
been carried out using demand-driven hydraulic analysis, which is clearly a limitation applying the 
findings to low-pressure networks, it is straightforward to conduct a similar study using pressure 
sensitive demand hydraulics (Pathirana 2010). 

CONCLUSIONS 

A modelling approach for reduction of chemical risk due to DBPs and microbial risk in distribution 
networks employing multi-objective optimisation together with an integrated chlorine decay, DBPs 
formation, and hydraulic models is presented. Vulnerability assessment of distribution networks in 
respect of exogenous chemical and microbial contamination have also been carried out. A tool has been 
developed by integrating the models and NSGAII and has been tested using a real distribution network 
with the objective of lowering the potential cancer treatment cost and water treatment cost by varying 
alum and chemical dose at the water treatment plant, and by varying the chlorine dose at booster 
chlorine locations without compromising the CT values required for microbial inactivation. Provision 
for varying the quantity of water from different sources has also been built into the tool as a measure to 
control DBPs in case of varying water quality from multiple sources in a network. 

Based on the results from the case study in Sri Lanka, the research concludes that it is possible to 
determine optimised chlorine and alum dosages, and thereby minimize carcinogenic risk due do 
chlorination DBPs without compromising microbiological safety. Employing effective water quality 
algorithms such as a particle backtracking algorithm can be helpful in solving problems arising out of 
water mixing from different sources and changes in water quality due to stagnation. Enhancement of 
water quality such as booster chlorine injection can be done in an effective manner with the help of a 
backtracking algorithm. Also, this approach is very useful in identifying mitigation measures and 
precautions in case of chemical or microbiological attack in the system. Coupled with online water 
quality monitoring and feedback stations in the system, a safe distribution network can be made 
operational and water security assured. Furthermore, the usage of optimisation techniques such as 
NSGAII enables one to select an optimal solution from a wide range of possible solutions. The 
modelling approach used in this study in combination with strategically placed valves can be used to 
implement water safety plans. 
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Figure 1 | Water and cancer treatment cost comparison for Minneriya network in various cases under 
consideration. 
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Figure 2 | Flow diagram for integration and system optimisation. 

 

Figure 3 | Minneriya water distribution network – Sri Lanka. 
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Figure 4 | Chemical risks in Case I, II, III, IV. 



 

 

 

Case V 

Figure 5 | Chemical risks in Case V. 
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Figure 6 | Chemical risk in cases VII andVIII. 



 

 

Case VI 

Figure 7 | Residual chlorine in case VI. 
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(a)  Residual chlorine 

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

8

11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71

W
at
er
 a
ge

 (h
o
u
rs
) /
 D
em

an
d
 (l
p
s)

Ch
em

ic
al
 R
is
k 
 (1

/1
00

,0
00

 P
er
so
n
s)

Run time (hours)

Demand
(LPS)

Case I Case II Case III Case IV Case V Waterage
(Hours)  

(b) Chemical risk 

Figure 8 | Residual chlorine and chemical risk in node MJ9-74 (Figure 2) in various cases under 
consideration. 
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Figure 9 | Arsenic spread in the network at various time.  Point of arsenic injection 
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Figure 10 | Arsenic spread at the nodes at various locations in the network. 
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Figure 11 | Variation in water age due to demand fluctuations. 

 

 


