Annual Journal of Hydraulic Engineering, JSCE, VOL. 44, 2000 February

ON THE SCALING PROPERTIES OF A
STOCHASTIC RAINFALL MODEL

Assela PATHIRANA!, Srikantha HEARTH?, Katumi MUSIAKE?

!Student member of JSCE, M. Eng., Institute of Industrial Science, University of Tokyo
(7-22-1 Roppongi, Minato-ku, Tokyo 160, JAPAN)
2Member of JSCE, Dr. of Eng., Guest Professor, Institute of Industrial Science, University of Tokyo
(7-22-1 Roppongi, Minato-ku, Tokyo 160, JAPAN)
3Fellow of JSCE, Dr. of Eng., Professor, Institute of Industrial Science, University of Tokyo
(7-22-1 Roppongi, Minato-ku, Tokyo 160, JAPAN)

A class of stochastic rainfall models known as ‘renewable process rainfall model’ is strong in
representing physical patterns found in the rainfall series. A stochastic rainfall model based on the
renewable process was constructed and possible scaling behavior across different time-resolutions
were examined. It was discovered that most of the model parameters obey power-law type scaling.
The result suggests the possibility of generating synthetic rainfall series of higher resolution from
low-resolution observations with these scaling properties.
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1. INTRODUCTION

Rainfall measurement is a time-consuming ex-
ercise, which demands a considerable amount of
effort and involvement. Two main factors govern
the analytical value of rainfall data series, namely
the duration of measurement and the temporal
intensity. For low resolutions like daily scale,
many years of records are available for many ge-
ographical locations. However when it comes for
high resolutions like hourly or less the availability
in terms of location as well as duration becomes
very much limited. For sub-hourly time-scales
like 10min or 1min, the records are limited to
a few experimental meteorological stations. The
recent shift of focus to sustainability and environ-
mental concerns has triggered a demand of rain-
fall data at much higher resolutions than gener-
ally available. There are many occasions where
the problem at hand require a different time-
resolution than that of the available rainfall data.
Due to the irregular nature of rainfall series, this
relationship between different resolutions is not
a trivial one. Thus, the problem of relating the
rainfall records of various resolutions has become
a timely topic.

Most of the ‘traditional’ stochastic methods
employed to analyze hydrological time-series in-
cluding rainfall, focus only on a fixed time-

scale.  There are many examples of rainfall
models, which work at hourly or larger scale.
The problem of relating the stochastic rainfall
model behavior at various time-scales is yet to
be addressed. On the other hand fractal and
multifractal scaling properties of rainfall time-
series have been extensively studied in the last
decade (Tessier, et al. 1996, Olsson 19967,
de Lima 1999%)) . Though most of these ef-
forts have mainly concentrated on the analysis
of rainfall properties than using it for actually
predictable rainfall models, they have revealed
some interesting scaling relationships across var-
ious time resolutions. One of the common fea-
tures of most of these fractal models is that they
address the analysis of rainfall series in the typ-
ical time-series fashion. The occurrence/non-
occurrence of rainfall can be analyzed using single
fractal theory, which involves ‘box counting’, or
finding the number of cells of a given size which
contains rainfall — along the time dimension. The
incorporation of rainfall quantity dimension to
this problem, namely considering the intensity, is
done generally by multifractal measures. Multi-
fractal methods that are popular for rainfall anal-
ysis, mostly use some modified method of box
counting that incorporate the intensity(Olsson
and Niemczynowicz 1996%). The most difficult
question one is faced, during the process of us-
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Fig. 1 Six parameters used to describe the structure
of a rain event.

ing these models to generate synthetic rainfall se-
ries, is that they are based mainly on ‘collection’
statistics and do not pay much attention of the
structure of the rainfall series.

One can find a family of rainfall models
which gives primary attention to the physical
shapes of the rainfall-series in the recent liter-
ature(Croley, et.al. 1974V, Ethoh and Murota
19862), Lardet and Obled 1994% and Haber-
landt 1998%)). Rather than modeling the rainfall
process as a succession of pulses of various inten-
sities, these consider some ‘collective’ measures of
a number of rain pulses next to each other, which
defines a physical shape. In the present paper we
model rainfall at different resolutions using a ‘re-
newal process’ (Lardet and Obled 1994%Y) rainfall
model. Model parameters are then investigated
for possible scaling relationships.

2. THEORY

A Rainfall series can be considered as a succes-
sion of alternative dry and wet spells, whose des-
ignation depends on the rules defined in the con-
text of the particular application problem. Most
important rule is the length of the minimum dry
period, which separates one rain event from the
other. Generally the nature of the problem at
hand has much to do with this definition. For
example if the interest is the runoff prediction for
flood problems, then a shorter dry period may
be considered than that of a ground water re-
lated problem. One of the key assumptions of
the present model is that the one rain event is
independent of the other rain events in the rain
series. Thus, a duration, which is large enough to
have small autocorrelation, should be used.

Figure 1 shows the key parameters of the model
in defining a rainfall event. The rainfall event is

HM

Fig. 2 Constructing a rain storm using the model
output.

modeled as a collection of rain storms of trian-
gular shape, a fact largely verified by the obser-
vations (Lardet and Obled 1994%). A storm as
defined in this model has a single peak value. The
properties of the whole event like the duration of
the rainfall event and the rainfall volume involved
are not directly used in the model. The properties
of a rainfall event are defined using the number
of storms in that event and the statistical prop-
erties of the storms. This leads to another key
assumption that storms that constitute the event
are independent of each other.

The external structure of the model is defined
by four parameters, namely the number of storms
in the rainfall event (NS),the length of the dry
period between two storms (ISD) and the dura-
tion(SD) and the volume(SV) of each storm. The
internal structure of a storm is defined by two pa-
rameters: the peak intensity (HM) and the time
duration from the start of the storm to the oc-
currence of the peak (LM). The four external pa-
rameters together with two internal parameters
fully define the rainfall event.

It is evident both from the general perception
of the problem as well as examining rainfall data
that some of these parameters have strong cor-
relations. Secondary parameters were defined to
reduce these dependencies. Once the distribu-
tions for six parameters, which are independent
of each other, are obtained from the observations,
it is possible to generate rainfall series syntheti-
cally by generating values for those parameters
sequentially, and then compute the storms using
the triangular distribution (Figure 2 )

3. RAINFALL DATA

A rainfall record of four years from a rain gauge
situated in Maehara Catchment in Chiba prefec-
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Fig. 3 Monthly average rainfall values of the avail-

able rainfall data.
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Fig. 4 Autocorrelations of the rainfall data.

ture, by the water resource-engineering labora-
tory of the University of Tokyo, was used for the
analysis. The rain gauge was tipping bucket type
with the tip size of 0.5mm. The gauge auto-
matically logs the number of tips at every ten-
minute interval, providing a time-series of 10min
resolution. In order to ensure temporal homo-
geneity, only the duration from the beginning of
May to end of July was considered for the analy-
sis. This covers a time-period which is regularly
‘rainy’ (figure 3.), but avoids the rains dominated
by typoons.

4. APPLICATION

Six hours was taken as the minimum stretch
of dry spell which can separate to rain events.
Autocorrelation of the series (See Figure 4, the
value for 6hrs is less than 0.1) show that the
assumption that events are independent of each
other, holds well at this level of separation.
Each of the six variables was calculated and the

Table 1 Correlation among the parameters.

SD ISD SV LM HM
SD 1 -0.285| 0.533 | 0.760 | 0.415
ISD 1 -0.187| -0.167| -0.119
SV 1 0.466 | 0.853
LM 1 0.315
HM 1

cross-correlations were examined. Table 1 shows
the correlation matrix for the resolution of one
hour. It was identified that the pairs (SD,SV),
(SV,HM), (SD,LM) have strong correlations and
hence cannot be generated one followed by the
other. The values of these high correlations seem
to be quite similar to those obtained in a previ-
ous study of hourly rainfall records in Japan(Etoh
and Murota 1986%)). Further it was observed that
these strong correlations are prevailing at all the
scales studied. Auxiliary variables were defined
to handle these dependencies, as follows:

SV = SDFSVSD 4 sy SD (1)
HM = SVEHEMSV o g SV (2)
LM = SDRLMSD  [MSD (3)

The model structure was defined in such a way
that, (for example in the case of SV, SD) first
SVSD is generated and then using the distribu-
tions of SVSD and SD and the value estimated for
RSVSD, the value for SV is computed by (1). By
this method the statistical relationship between
SV and SD are maintained. Probability distribu-
tions were fitted for each of the parameters. Most
of the parameters fitted well with either exponen-
tial or log-normal distribution (See Figures 5 and
6 for examples).

(1) Model Verification

In order to test whether the overall statistical
properties of the observations are adequately rep-
resented in the model, the statistics, which are
not involved in the modeling process, were com-
pared. The event duration (ED) and the total
rainfall volume in a rainfall event (EV) are such
parameters. The comparison of the distribution
of these two parameters are shown in figures 7
and 8.

(2) Scaling Properties

It was observed that the power-factors
(RSVSD,RLMSD and RHMSV) have very close
values at different resolutions. Figure 9 shows the



Fig. 5 Probability distribution for SVSD.

Fig. 6 Probability distribution for SVSD.

values estimated for these factors by linear re-
gression at various time-steps. The average value
of each of these factors was used when compar-
ing the model parameters. The probability dis-
tributions used to model the model parameters,
namely exponential and log-normal distributions,
are defined fully with the arithmetic mean of the
distribution and mean and variance on logarith-
mic scale respectively. Hence, the mean and vari-
ance of distributions for each coefficient at differ-
ent time steps were examined. Some of the scal-
ing relationships are illustrated in Figures 10,11
and 12. Figure 10 shows the scaling of the vari-
ables NS and SD. NS varies in a linear fashion,
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Fig. 7 Event duration distributions at 30min resolu-
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Fig. 8 Event volume distributions.

whereas the variation of SD is close to a hyper-
bolic function. This further indicates the (in-
tuitive) complimentary relationship between the
two variables. Almost all of the parameters have
their first moments scaling according to a power
law.

(3) Predictability

In order to examine the quality of possible gen-
eration of higher resolution rainfall from those
of lower resolution, the following exercise was
carried out. Using the parameter estimates for
30min and lower resolutions and assuming a
power-law scaling in general, predictions were ob-



16

H10min B20min E30min Olhr W15hr O2hr @Average

Fig. 9 Values of power-factors at various resolutions.
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tained for the parameters for 10min and 20min
resolutions. Using these extrapolated parame-
ters, synthetic rainfall series was developed. It
was observed that the statistical properties of
generated 10min and 20min series using these ex-
trapolated values agree well with the series gen-
erated from the parameters estimated from the
original 10min and 20min series. Figure 13 shows
the comparison of the distribution of event vol-
ume (EV) at 10min resolution.

5. CONCLUSIONS AND DISCUS-
SION

A ‘renewal process rainfall model’ was used to
model the rainfall observed in Maehara, Chiba
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Fig. 11 Scaling of the mean of SVSD.
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Fig. 12 Scaling of the mean of HMSV.

Prefecture in Japan. The statistics of the rain-
fall generated from the model agree fairly well
with those of observed rainfall. It was found that
the same model structure could be used to model
the rainfall series at different resolutions. The
distributions of parameter values of the model
for same rainfall series at different time resolu-
tions show well defined scaling properties follow-
ing power law in general.

The model behavior in the resolutions ranging
from a few hours to ten minutes were examined
in the present study. The rainfall structure at
this range of resolutions seems to be modeled rea-
sonably well with the current approach, involv-
ing triangular shape based storm. However, the
applicability of the model to coarser resolutions,
(like daily scale) might not be equally successful
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due to the differences in the structure of the rain-
fall. Such extensions of the applications should
be carefully verified.

The practical use of the approach would de-
pend on how closely the rainfall series can
be modeled with the ‘renewal process’ rainfall
model. Once it is modeled at a few coarse resolu-
tions, higher resolution model parameters can be
estimated assuming power law type distributions
to model at higher resolutions. Further work is
required in this direction.

(Received September 30, 1999)
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