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Multifractal analysis was performed on hourly spatial rainfall for Kanto region, from two sources,
namely, interpolated rain gauge data and radar estimated rainfall grids. An attempt was made
to make the data sets for analysis from the two sources as similar as possible by selecting same,
spatial extent, spatial resolution and record precision. It was found out that in both cases, a single
multifractal model can explain all the scales involved in the analysis, from 0:10 to 0:80. Multifractal
parameters derived for a hundred high rainfall events of a year showed that, for these high rainfall
events, the parameter C1 is agreeing quite close in two data sources, while the L¶evy index, ® shows
a signi¯cant scatter. We suggest that even with distributions, which are apparently similar, scaling
properties can show signi¯cant di®erences. Finally we give a qualitative explanation for the marked
di®erence of scatter in the relationship for di®erent multifractal parameters by comparing with the
relationships of the `traditional' statistics like grid mean, maximum rainfalls and wet fractions for
the two data sources.
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1. INTRODUCTION

Until very recent times, there was no reliable
method to measure rainfall in space. Rain gauge
networks are often two sparse to capture the spa-
tial variations in small scales properly. Recent
innovations in Radar estimation of rainfall have
provided an alternative means of studying spatial
variation in a more continuous manner. While on
one hand the radar estimates give more spatially
continuous measurements that facilitate spatial
analysis, on the other hand caution should be
practiced in using those, since radars do not mea-
sure rainfall directly as rain gauges do.

In the recent literature there are a number of
reports on multifractal characterization of spatial
rainfall estimated by gauge data interpolation1)

and by radar estimates2). Most of these attempts
have concentrated on one particular method
of spatial rainfall estimation. AMeDAS rain-
fall measuring network of Japan Meteorologi-
cal Agency, having both an extensive and dense
point scale measurement network as well as cal-
ibrated country-wide radar estimations3), pro-
vides a unique opportunity to compare the per-

formance of said two methods in terms of scaling
properties.

In this manuscript we present the results of
multifractal analysis of radar derived and gauge
derived rainfall estimates in spatial scale. Rain
gauge network data, originally in point scale val-
ues were interpolated to provide spatial rainfall
maps. Radar rainfall maps were extracted from
the countrywide compiled radar grid rainfalls.
After processing the two types of data to have
same spatial resolution and record precision, mul-
tifractal analysis was performed. The primary
objective of this analysis was to compare vari-
ous multifractal parameters estimated from two
data sources. Finally the parameter deviations
are explained in terms of the comparisons of the
`traditional' statistics of two data sources.

2. THEORY

Under fairly general conditions, the properties of
a random variable, P (R ¸ r), that describes a in-
tensity distribution of a measure, R, can be equiv-
alently described by all the statistical moments,
M(q) of the distribution de¯ned below:



M(q) = hRqi 8q: (1)

For small values of q,M(q) comprises mainly of
moments contributing from small (and frequent)
values, while the large values of q results in mo-
ments where the major contribution is from ex-
treme (and infrequent) values. We express the
statistical moment at a given intensity by a scal-
ing exponent K(q) as4)

hRqi » ¸K(q) (2)

where ¸ = L=l; l is the scale of interest and L is
a largest scale involved (an arbitrary value). For
spatial analysis l and L are measured in length
units. The notation h i is used to denote ensemble
(climatological) average, though in usual practice
it is taken as arithmetic mean.
For multifractal ¯elds that are scaling (i.e.

there is a similarity between measurements of var-
ious scales) the function K(q) is unique for all
scales and can be expressed as5)

K(q) =

8><>:
C1
®¡1(q

® ¡ q); 0 · ® < 1, 1 < ® · 2

C1q log(q); ® = 1

(3)
where C1 and ® (known as L¶evy index) are con-

stants. For scaling ¯elds the condition 0 · ® · 2
should be met with. The parameters C1 and ®
describe a scaling ¯eld in a range of scales.

(1) Double Trace Moment (DTM) Anal-
ysis Technique

DTM analysis is a technique developed by
Lavall¶ee (1991)6) to determine the multifrac-
tal model parameters based on generalized mo-
ments. The application of the method is straight-
forward: First, the original ¯eld is raised in to a
power ´ at the smallest scale (¸0). Then the ¯eld
is aggregated to the needed scale, ¸ and raised to
the usual exponent q. The resulting `double' mo-
ment can be assumed to have a scale relationship
of the following form.

h(R´¸0)q¸i » ¸K(q;´) (4)

The resulting exponent K(q; ´) can be related
to the usual exponent K(q) as:

K(q; ´) = ´®K(q) (5)

which allows the determination of ® as the
slope of the linear part of the plot of K(q; ´)
against ´ in logarithmic scale. By considering
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Fig. 1 Location of AMeDAS rain guages in the se-
lected area

K(q; 1) = K(q), C1 can be determined from equa-
tion 3 by the intercept of that linear part. Since,
the calculation can be repeated for a range of val-
ues of q it is possible to obtain a statistical esti-
mation for multifractal parameters.

3. DATA

(1) Guage Rainfall

The analysis was limited to the Kanto region of
Japan, in order to have a reasonably climatolog-
ically homogeneous area. In ther selected region
there are about 510 rain gauging stations (Fig-
ure 1). The rainguage data was interpolated us-
ing Thiessen polygon method. Preliminary anal-
ysis showed that, with the present rain gauge den-
sity the ¯nest spatial resolution that can reason-
ably retain spatial variations is 0:10 and thus it
was selected as the grid cell size for the rainfall
grids. All the grids that are not closer than 20km
to any of the rain gauges were removed from the
analysis, since the precipitation at such grids is
likely to be much o® from the value observed at
the nearest gauging station, though the interpola-
tion method assigns the value of the nearest gaug-
ing station.

The resulting dataset of each time period is
similar to that shown in ¯gure 2. Before pro-
ceeding to multifractal analysis there is one addi-
tional step to be performed. The mathematical
theory of multifractals (in two dimension) that



was used in this manuscript was developed for
rectangular part of the multifractal ¯eld, with no
missing values. Then the number of boxes N(l)
with side l contained in the region follows the re-
lationship N(l) = l¡D where D = 2. (In fact
D is known as the Hausdor®-Besicovitch dimen-
sion or the fractal dimension, and can take non-
integer values for complex shapes.) It is fairly
straightforward to apply the analysis to a ¯eld
with missing value. The only change in compu-
tation is that when making ensemble averages of
moments, the missing values should be ignored.
However when the `non-missing' area is of a very
irregular shape as shown in ¯gure 2, the exponent
D in the relationship of the (computable) number
of boxes become di®erent from 2 (the topological
dimension for 2-dimensional space). This induces
an error in the moment computations and should
be avoided.

The rainfall grid was divided to 0:80x0:80 boxes
and each box that has a large number of missing
values was eliminated from the grid. The result-
ing grid shown in ¯gure 3 maintains (above dis-
cussed) D = 2 from the smallest grid size (0:10)
to 0:80. Thus, by limiting the analysis to scales
below 0:80, we can e®ectively get rid of the grid
irregularity e®ect.

(2) Radar Rainfall

The preparation of radar rainfall grids is straight-
forward. From the radar AMeDAS product, the
hourly radar maps were extracted for the area
of interest. There is an important di®erence be-
tween the radar grid products used in the analysis
and the prepared gauge based grids. While the
grids prepared from rain gauge data has 0:10x0:10

size, the radar grids are of 0:06250x0:050 size,
which gives the latter a nearly square shape in the
latitudes near Japan. Figure 4 shows the radar
rainfall grid for the same hour as ¯gures 2 and 3.

In order to minimize comparison errors, the
radar rainfall grids were also resampled (using bi-
linear interpolation as described by Wessal and
Smith7)) to create grids of 0:10x0:10 size. Then
the data outside the `e®ective area' of the gauge
derived rainfall (explained in section (1) and ¯g-
ure 3) was removed to eliminate possible errors
due to spatial-inhomoginity. Finally, the regis-
trations less than 1mm were removed (replaced
by zero), as the minimum precision of rain gauge
data was 1mm. Figure 5 shows the ¯nal radar
grid used for the analysis.
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Fig. 2 An example of the rainfall grids cre-
ated by interpolating rain guage data.
Date: 1997/Jun/28 21:00hrs.

136º

136º

138º

138º

140º

140º

34º 34º

36º 36º

38º 38º

0.00

0.01

0.25

0.50

1.00

2.00

4.00

8.00

16.00

32.00

64.00

0 100 200

km

Fig. 3 Final set of gauge-derived grids available for
analysis, after removing partially ¯lled :8ox:8o

boxes. Date: 1997/Jun/28 21:00hrs.

4. ANALYSIS

A usual ¯rst step in multifractal analysis is to
normalize the data to have mean of unity. Af-
ter normalizing the procedure of analysis is as
follows: For a given q, h(R´¸0)q¸i (DTM value) is
calculated for a range of values of ´. This is done
by raising the observed values to power of each
´ at the highest resolution (0:10x0:10 for gauge
interpolated grids, 0:06250x0:050 for radar data).
Then the grid values are computed at each res-
olution (e.g. original resolution, 2x2 of original
resolution, 4x4 of original resolution and so on).
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Fig. 4 A radar rainfall grid used for the analysis. An
area larger than that is used for the analysis
is shown here. Date: 1997/Jun/28 21:00hrs.
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Fig. 5 A radar dataset ready for comparison with
gauge derived data. Date: 1997/Jun/28
21:00hrs.

¸ value for each resolution is computed as the
ratio of that scale to the largest available scale
(e.g. we consider the largest scale for radar data
as 128x128 grids, so for the case of 2x2 grids,
¸ = 128=2 ). The DTM value is plotted against
¸ in logarithmic scale. Figure 6 shows such a
graph for q = 1:4. The linearity of the curves
show that the whole range of scales involved can
be explained by a single scaling model.
Finally the estimated K(´; q) values are plot-

ted against ´ in logarithmic scale. Figure 7 shows
such a graph for some selected values of q. The
multifractal parameters ® and C1 can be esti-
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Fig. 6 Plot of h(R´¸0)q¸i (DTM) against ¸ for q =
1:4. Logarithms are calculated to base 2.
Date: 1997/Jun/28 21:00hrs.

mated from this plot as explained earlier.

5. RESULTS

Results for hundred rainfall hours in the year 1997
with more than 90% radar coverage of the initial
radar grids, and with largest average rainfall val-
ues in ¯nal gauge-based grids were analyzed.

(1) rainfall comparison

Figure 8 shows the scattergram of mean rain-
fall for the selected hundred stations. It seems
that for these high rainfall events, the grid aver-
age rainfall is in good agreement between radar
and gauge based estimations. The comparison
of maximum grid values are shown in ¯gure 9.
While the agreement between two estimates is
generally close, the radar-based estimations seem
to be higher by an approximately ¯xed amount of
6§ 7mm. Further the scatter in this comparison
is substantially larger than that of the compari-
son of the means. The comparison of the fraction
of rainy cells in each grid (Figure 10) shows that
the values for radar estimations are generally less
than those of gauge estimations.

(2) Fractal Parameters

Figures 11 and 12 show the comparison of multi-
fractal parameters C1 and ® respectively. While
there is a very close agreement between C1 val-
ues estimated by two methods, ® values show a
larger di®erence as well as a scatter from the av-
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Fig. 7 Plot ofK(q; ´) against ´ for some selected val-
ues of q. Logarithms are calculated to base 2.
Date: 1997/Jun/28 21:00hrs.
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Fig. 8 Comparison of grid-mean rainfall values.

erage relationship.

6. DISCUSSION
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Fig. 9 Comparison of maximum rainfall values.
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Fig. 10 Comparison of wet fraction in grids.

(1) Multifractality in Space

The analysis presented shows that the multi-
fractal model can be used to understand the spa-
tial distribution of rainfall. Within the (small)
range of scales of cell size of 0:10 to 0:80 the scal-
ing behavior was established. The physical limits
of scaling regime in spatial scale can not be esti-
mated due to the fact that analysis outside this
resolution limit (from 0:10x0:10 to 0:80x0:80 is not
possible with the present data con¯guration.
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Fig. 11 Comparison of C1 values.
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Fig. 12 Comparison of ® values.

(2) Parameter relationships
To understand the signi¯cance of the di®erence
of multifractal parameters in two types of data,
the following expression, which is equivalent to
equations 2 and 3, is presented8):

P (Á¸ ¸ ¸°) » ¸¡c(°) (6)

c(°) =

8<: C1
³

°
C1®0 +

1
®

´®0
®6= 1

C1exp
³
°
C1
¡ 1

´
® = 1

(for 0 · ® · 2)
(7)
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Fig. 13 Sensitivity of c(°) function to the changes in
multifractal parameters C1 and ®. (a) and
(c): Sensitivity of ®; (b) and (d): sensitivity
of C1.

where ° is a constant. Here the functions K(q)
and c(°) are related by a Legendre transform9):

c(°) = maxq(q° ¡K(q))
K(q) = max°(q° ¡ c(°)) (8)

c(°) which is a function of C1 and ® is directly
related to the exceedance probability of values of
the ¯eld. Thus, the relationship of the multifrac-
tal parameters, C1 and ® and the values in the
multifractal ¯eld can be better understood by ex-
amining e®ect of those parameters on the value
of c(°) function. Figure 13 shows plots of c(°)
function for two ranges of °. Graphs on top cov-
ers values of ° from 0 to :2. These represent the
grid values from the mean to 2-3 times of the
mean in the normalized grid values. Graphs on
the bottom covers values up to about 150 times
the mean value. Two points are made clear from
these graphs: 1) The sensitivity of c(°) function
(i.e. sensitivity of exceedance probability, P ) to
® is largely limited to the high values of c(°)
(i.e. extreme values). 2) The sensitivity of C1
is present both for extreme values and `normal'
values.
These observations provide important clues as

to why the ® parameter shows a signi¯cant scat-
ter between radar and gauge estimates while C1
shows very much less scatter. The scatter of the
mean rainfall (Figure 8) and that of fraction of
wet cells (Figure 10) show signi¯cantly low scat-
ter compared to the maximum grid value (Fig-
ure 9). (One reason for this di®erence may be
the large sample size involved in mean and wet
fraction calculations.) One of the features of mul-
tiscaling models is that they are quite sensitive to
extreme values. As explained before, this sensi-



tivity in the current model is mainly with the pa-
rameter ® (Figure 13). Hence it is usual for the
two estimates of ® values to show more scatter
that those for C1 values.

7. CONCLUSIONS

Using radar data for multifractal analysis of spa-
tial rainfall is an appealing alternative to inter-
polation of gauge data due to many reasons. In
this study we found that while it is true that the
spatial patterns from two methods behave in a
very similar patterns, there are some points that
demands closer attention.
Overall statistics of radar and gauge interpo-

lated rainfall agree well. However, in the case of
multifractal analysis, only C1 values are agree-
ing closely while the estimations of ® shows a
signi¯cant scatter. We try to explain this behav-
ior with the fact that in the multifractal model
adopted, the value of ® is related largely with ex-
treme values of the distribution, while C1 relates
to `normal' values as well as (to some extent) to
the extreme values. ®'s `sole' dependence on ex-
treme values seen together with signi¯cant scatter
of maximum values in radar and gauge compari-
son explains the relatively poor relationship of ®
in the comparison.
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