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Abstract Multiplicative cascade schemes are extensively used to distribute the 
large-scale forcing of precipitation imposed by global atmospheric models for 
a limited spatial domain into its constituent grids. A model is proposed to 
introduce temporal persistence to one of the cascade based rainfall disaggrega-
tion models used for this purpose. A time series scheme based on the Markov 
process is used to relate the cascade properties to those of the previous time 
step. The resulting distributions could mimic the pixel level temporal 
persistence of spatial rainfall effectively, making cascade distributed 
spatiotemporal rainfall more suitable for applications in surface hydrology.  
Key words  multiplicative cascade scheme; rainfall disaggregation; rainfall downscaling 

 
 
INTRODUCTION  
 
Modern-day hydrologists involved in solving diversified water resources and environ-
mental issues are increasingly recognizing the importance of incorporating high 
resolution spatial and temporal variability of rainfall as one of the most important 
parameters in applied hydrology applications. Spatial measuring techniques like 
weather radar reveal a much more complicated picture of rainfall variability than those 
revealed by traditional gauge networks. In spite of being complicated, the 
understanding of the relationships between different spatial scales has become crucial 
for the successful utilization of available spatial rainfall data sources for hydrological 
problem solving. One such area is the resolving of the aerial distribution of rainfall 
under specified forcing conditions. This particular scaling problem finds its uses in 
many areas including: (a) utilization of global and regional weather forecasts as data 
sources for locations that do not have adequate local monitoring facilities; and 
(b) understanding of the consequences of global climatic changes as predicted by 
global climatic models on the local hydrology. Perhaps the most widely researched 
solution for the problem is the use of limited-area atmospheric model outputs with 
dynamical equations (Pielke, 2002). Downscaling model outputs based on stochastic 
properties provide much simpler and computationally efficient solutions without the 
physical basis. There are also hybrid models that represent a compromise between the 



On the modelling of temporal correlations in spatial-cascade rainfall downscaling 
 
 

75

physical basis and simplifications based on stochastic models (e.g. Georgakakos & 
Krajewski, 1996). The present research using the fractal theory falls into the category 
of stochastic models.  
 Using cascade theories to spatially distribute global or mesoscale rainfall has a 
number of attractive features, where the adequacy of the ability to mimic the spatial 
variability and discontinuity as in observed rainfall is a major one. In the last two 
decades, a number of multiplicative cascade-based rainfall downscaling models and 
techniques have been developed. However, in spite of these numerous advances, the 
applications of these products in hydrological applications like runoff studies have 
been rare. Most of the successful efforts of multifractal analysis and cascade modelling 
of rainfall have been limited to either temporal or spatial dimensions. On the other 
hand, even a crude maintenance of both spatial and temporal correlations is a 
prerequisite for distributed run off modelling. Hydrological processes such as 
infiltration, evapotranspiration and overland flow critically depend on the temporal 
distribution of a rainfall event, in addition to the quantity of precipitation. Due to this 
sensitivity of the governing equations of watershed hydrology to the memory of the 
past states, a rainfall product needs to be accurate in the temporal persistence, in 
addition to the spatial features, for it to qualify as a candidate for surface response 
studies. The effects of temporal correlations can be relatively small at temporal scales 
like a day or a week, due to the smaller temporal limits of the prevailing rainstorm 
evolution. However, at hourly or smaller scales the effects of rainfall evolution in time 
are predominantly exhibited. Thus, the unavailability of means to maintain the 
temporal persistence in spatial models is perhaps a main reason for the lack of appeal 
to apply cascade downscaling of rainfall to runoff and other hydrological studies.  
 One theoretically attractive way of overcoming this inadequacy is to model rainfall 
as a full spatiotemporal process (Pegram & Clothier 1999; Deidda, 2000) utilizing the 
famous Taylor hypothesis. This involves transformation of the temporal dimension 
into a third spatial dimension by multiplying with a hypothetical velocity factor, 
derived empirically from observed rainfall. On the other hand, Lammering & Dwyer 
(2000) proposed an empirical scheme where the early steps of cascade simulations are 
exactly duplicated in the successive time steps. Further, they showed that the 
introduction of even a crude representation of temporal persistence could significantly 
improve the performance of rainfall products in hydrological analysis.  
 Alternatively, we propose a simpler time series approach combined with the cascade 
schemes, which can be used with relative ease to introduce the temporal correlations 
observed in rainfall into spatial downscaling schemes. We interpret the scaling of rainfall in 
space as the combined effect of a spatial multiplicative cascade process based on large-scale 
forcing and a number of time series processes that relate rainfall intensity at a given cascade 
level to that of the past time steps or the history. Thus, the model is capable of mimicking the 
temporal persistence at all spatial scales involved in the problem at hand. We use a number 
of Markov processes (Haan, 1977) to model the autocorrelations.  
 The ability of a cascade scheme to treat the zero rainfalls explicitly (e.g. Over & 
Gupta, 1996) may be of particular interest to the run off analyst. In addition to the 
intensity, data analyses shows that zero rainfalls at various spatial scales, also have a 
strong temporal correlations. In the present model, zero rainfall persistence is modelled 
based on a simple conditional probability scheme.  
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 After developing the theoretical framework for the proposal based on the features 
of spatial rainfall, the model’s ability to mimic temporal persistence is demonstrated 
using hourly radar-based spatial rainfall observations for the central part of Japan. The 
radar-based rainfall estimates calibrated by raingauges known as radar-AMeDAS data 
(Makihara, 1996) was used for the present study. A rain storm from 14 May 1997 
12:00 h to 17 May 1997 12:00 h, covering an area of 128 × 128 pixels bounded by 
39.65°N, 134.5°W, 33.3°S and 142.4375°E was selected to demonstrate the operation 
of the model.  
 
 
CASCADE DOWNSCALING 
 
Multiplicative cascade schemes were first used to describe turbulent energy relations 
between eddies of different sizes in fluid flows. During the last two decades, the theory 
has increasingly been used to describe and model rainfall process in space and time 
dimensions. While the quantity of interest of the former case is energy, that of the 
latter is the quantitative rainfall. Figure 1 gives a schematic representation of a multi-
plicative cascade scheme in two dimensions. The process starts with a uniform 
intensity in the process domain. At each step, a uniform field is subdivided into four 
equal parts and each is multiplied by a cascade weight W that is derived from a specific 
probability distribution. The 128 × 128 data space used in the present study involves 
seven cascade steps.  
 In the present research, the β-lognormal model proposed by Over & Gupta (1996) 
was used to model the scaling in spatial dimension. A key feature of this model is the 
explicit modelling of non-rainy areas in addition to the rainfall intensity. In this model 
it is assumed that the zero–nonzero partitioning and the intensity process are 
independent of each other, which is not completely realistic. Typical uses of this model 
 
 

 
Fig. 1 A multiplicative cascade process in two-dimension. Uniform fields are divided 
into four and multiplied with the cascade weight W to obtain the next step.  
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for distributing a large-scale forcing amount into finer grids can be found in 
Jothityangkoon et al. (2000) and Pathirana & Herath (2002).  
 
 
TEMPORAL CORRELATIONS 
 
Physical understanding of the rainfall process, as well as numerous observations, 
confirms that it is one that evolves in space over time. In most cases storm movement 
in a specific direction is involved. However, these patterns are very much dependent 
on the atmospheric conditions, landforms, and the wind patterns involved in the 
specific location and time (for example, see Fig. 2). There were numerous attempts to 
improve the realistic representation of rainfall-related atmospheric phenomena using 
physically-based atmospheric models. However, in the context of a stochastic model 
these are hard to represent with an accuracy that justifies the increased complexity of 
model. The approach proposed in this paper is far simpler, with the assumption that the 
correlations of cascade weights can adequately capture the essential effects of storm 
evolution.  
 In order to understand the nature and magnitude of the correlations at different 
cascade levels, the following analysis was done: each spatial field of hourly series of 
rainfall snapshots was degenerated (the exact reverse of the process shown in Fig. 1) to 
obtain cascade weights W at each branch at each cascade level. The autocorrelations 
were calculated using the time series of weights corresponding to each pixel (i, j) at 
each cascade level k. Figure 3 illustrates these time series for a cascade process in one- 
dimensional space. A single value of autocorrelation for each cascade level was 
 
 

 

Fig. 2 A selected portion of a hourly spatial rainfall series of a storm over the central 
part of Japanese archipelago. Rainfall patterns show a clear evolution over time and a 
non-random directional movement.  

 
 

  

Fig. 3 The cascade weights at each cascade level are modelled as correlated processes. 
A one-dimensional cascade is shown for simplicity.  
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Fig. 4 Autocorrelations of cascade weights between adjacent rainfall fields. Fittings of 
a Markov process are also shown. 

 
 
obtained by considering the time series for each pixel (i, j) for the same level k are 
realizations of the same time series process. In the case of the nth cascade step of a 
two-dimensional cascade, there would be n22  number of weights involved and thus, 

n22  number of correlation values will be averaged. The results of the analysis are 
shown in Fig. 4. The analysis shows that the cascade weights have significant 
autocorrelations and that they diminish in magnitude with the cascade step. Further, it 
is clear that a Markov process given by Wt = φ Wt-1 + W  can adequately represent the 
correlation process, where 0 < φ  < 1, W is a random variable and t is time.  
 
 
MODEL FORMULATION 
 
The generator (the function which generates the weights W) of a typical β log-normal 
cascade model, adopting a notation slightly different from the original of Over & 
Gupta (1996), can be expressed in the following form:  

P(W = 0) = 1 – e–γ; P(W = eγ–σ
2/2+σX = eG(r–σ2/2σ)) = e–γ (1) 

where X is a standard normal variable and G(µ,σ) indicates a normal distribution with 
mean µ and standard deviation σ. The model parameter γ is used to explicitly partition 
rainy and non-rainy areas and σ handles the intensity distributions by controlling the 
generator for non-zero W. Note that the cascade process is statistically conserved due 
to the fact that expected value, E(W) = 1. In order to introduce the temporal persistence 
to cascade modelling, this model should be modified to incorporate correlations among 
cascades adjacent in time. Since the cascade model requires the weights to be positive-
definite, the logarithms of the weights, instead of cascade weights, were modelled. 
This does not cause a problem since the logarithmically transformed weights also show 
a good autocorrelation structure (Fig. 5). Then, with a Markov process as the basis for 
autocorrelations, the following generator can be proposed for the intensity formulation:  

Wi = eφk log(Wi-1) + G(µi′,σi) (2) 

where i is the time step, φk the Markov parameter for cascade level k and:  

µ′i = γi – σ2
i/2 – φk(γi–1/2); σ′2i = σ2

i – φ2
kσ2

i–1  for   σ2
i > φ2

kσ2
i–1 = 0    o.w.  (3) 
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Fig. 5 Autocorrelations of logarithmically transformed cascade weights of observed 
rainfall. 

 
 

 
Fig. 6 Probability of rain in a previously rainy pixel x = PN(i)│PN(i–1) and probability of 
rain in a previously dry pixel y = PN(i)│PZ(i–1 at different cascade levels.  

 
 
The last statements assume that (G(µi′,α i′) is independent of Wi–1. Note that the new 
generator is also conserved. In addition to the intensities, the rainy/non-rainy areas also 
have temporal correlations. Analysis of the conditional probabilities of rain occurrence 
at pixels that had/did not have rainfall in previous time steps showed that the 
probability of rainfall is significantly high if there was rainfall in previous step (Fig. 6). 
Thus, the conditional probability:  

[ ])1(|)( −= iNiNPx   (4) 

where i is the time step, N denotes non-zero rainfall, was used as a single value for the 
whole model to represent the persistence. Since there was no strong dependency of the 
quantity x with the cascade level (in contrast of φ) a constant value of x was used for 
all levels. For mathematical consistency, the model should make sure that the 
probability y = P[N(i)│Z(i – 1)] (where z indicates zero rainfall) should satisfy 
0 ≤ y ≤ 1. These details are not presented.  
 
 
MODEL CALIBRATION 
 
The calibration of the model should have two stages: the first stage is obtaining the 
parameters for the model given in equation (1). Since the typical use of the cascade 
model is to distribute a given uniform rainfall amount by a large-scale model among  
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Fig. 7 Regression relationships of σ2 and γ with large-scale forcing, obtained by data 
analysis. 

 
 
the constituent pixels, these model parameters are expressed as regression functions of 
the large-scale forcing (Fig. 7). The second stage of calibration involves the 
determination of the temporal persistence parameters σk and x in equations (2) and (4). 
The former is found by fitting Markov processes to autocorrelation functions by least 
square fitting as shown in Fig. 5. The mean estimate of conditional probability given 
by data analysis (for all cascade levels) is used for the latter, x. 
 
 
MODEL OPERATION AND RESULTS 
 
Once a cascade model is calibrated, it can be used to spatially distribute a rainfall 
amount specified by large-scale forcing in a way that is statistically similar to observed 
data. Cascade models can accurately represent the spatial variability, intermittency 
and, sometimes, extra features such as zero value fractions and spatial heterogeneity 
(Jothityangkoon et al., 2000; Pathirana & Herath, 2002). The additional feature of the 
proposed model is its ability to represent the temporal persistence that is present in 
observed data.  
 The procedure of downscaling a time series of large-scale forcing values using the 
model is as follows: First, values of model parameters σ2 and γ are obtained from the 
regression relationships (Fig. 7). If the present time step is the first in the series, or if 
there was a zero rainfall amount in the previous step, the typical cascade downscaling 
based on weights obtained from equation (1) is used. If this is not the case, then 
equation (4) is used to divide the rainy fraction given by γ among previously rainy and 
previously non-rainy areas. Then equation (3) is used to determine weights for the non-
dry portion of the cascade level. It should be noted that, according to the present model 
formulation, persistence of dry–wet partitioning x does not depend on the cascade 
level, though that of the intensity formulation φk does.  
 Figure 8 shows the autocorrelations found in simulated cascades. The Markov 
model could preserve the cascade level persistence comparable to those found by data 
analysis. Figure 9 shows two time series of spatial distributions, one downscaled using 
the typical cascade simulation without considering the autocorrelations and the other 
using the model proposed in this paper. The present model could introduce the 
temporal persistence similar to that found in observed data.  
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Fig. 8 Autocorrelations of logarithmically transformed cascade weights of simulated 
rainfall. 
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Fig. 9 Sample rainfall distributions using cascade theory: (a) typical cascade 
simulations, without considering temporal correlations, and (b) simulations using 
present model. Results produced at three cascade steps for clarity. 

 
 
DISCUSSION 
 
Spatial multiplicative cascade theory can be effectively used to distribute a rainfall 
amount prescribed by large-scale forcing on a spatial domain, into its constituent grids. 
However, when the cascade simulations of the large-scale forcing values on the 
temporal succession are done independently of each other, the resulting spatial 
distributions lack the temporal persistence that is shown by observed rainfall (Fig. 2). 
While these distributions faithfully reproduce the characteristics of variability and 
intermittency of spatial rainfall, they are not suitable as input for applications in 
surface hydrology for the above reason. The correlation technique proposed in the 
present paper modifies the cascade simulation scheme so that the pixel-level temporal 
persistence is introduced into cascade simulations using a set of simple time series 
models to determine cascade weights. The modified model could maintain in the 
simulated spatial rainfall fields and the temporal correlations that are present in 
observed spatial rainfall. 
 The temporal persistence in real spatial rainfall is maintained by physical 
mechanisms like wind such as caused cloud movement and rainstorm evolution over 
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time. Since those mechanisms are not explicitly represented in the present model, it 
cannot realistically mimic the movement of rainstorms over time. The present method 
is significantly less complicated and easier to calibrate than the full three-dimensional 
treatment of rainfall. On the other hand, it is fully based on the empirical properties of 
the observed spatial rainfall and configurable to suit the rainfall patterns of a particular 
geographical location or season.  
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